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Abstract

IMPORTANCE No previous studies have shown that acute inhalation of thirdhand smoke (THS)

activates stress and survival pathways in the human nasal epithelium.

OBJECTIVE To evaluate gene expression in the nasal epithelium of nonsmoking women following

acute inhalation of clean air and THS.

DESIGN, SETTING, ANDPARTICIPANTS Nasal epithelium samples were obtained from participants

in a randomized clinical trial (2011-2015) on the health effects of inhaled THS. In a crossover design,

participants were exposed, head only, to THS and to conditioned, filtered air in a laboratory setting.

The order of exposures was randomized and exposures were separated by at least 21 days.

Ribonucleic acid was obtained from a subset of 4 healthy, nonsmoking women.

EXPOSURES By chance, women in the subset were randomized to receive clean air exposure first

and THS exposure second. Exposures lasted 3 hours.

MAINOUTCOMESANDMEASURES Differentially expressed genes were identified using RNA

sequencing with a false-discovery rate less than 0.1.

RESULTS Participants were 4 healthy, nonsmoking women aged 27 to 49 years (mean [SD] age, 42

[10.2] years) with no chronic diseases. A total of 389 differentially expressed genes were identified in

nasal epithelium exposed to THS, while only 2 genes, which were not studied further, were affected

by clean air. Enriched gene ontology terms associatedwith stress-inducedmitochondrial hyperfusion

were identified, such as respiratory electron transport chain (q = 2.84 × 10−3) andmitochondrial

inner membrane (q = 7.21 × 10−6). Reactome pathway analysis identified terms associated with

upregulation of DNA repair mechanisms, such as nucleotide excision repair (q = 1.05 × 10−2).

Enrichment analyses using ingenuity pathway analysis identified canonical pathways related to

stress-inducedmitochondrial hyperfusion (eg, increased oxidative phosphorylation) (P = .001),

oxidative stress (eg, glutathione depletion phase II reactions) (P = .04), and cell survival (z

score = 5.026).

CONCLUSIONS ANDRELEVANCE This study found that acute inhalation of THS caused cell stress

that led to the activation of survival pathways. Some responses were consistent with stress-induced

mitochondrial hyperfusion and similar to those demonstrated previously in vitro. These datamay be

valuable to physicians treating patients exposed to THS and may aid in formulating regulations for

the remediation of THS-contaminated environments.
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thirdhand smoke alter the transcriptome
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Introduction

Thirdhand smoke (THS) is a subset of chemicals in secondhand cigarette smoke (sidestream smoke

emitted by a burning cigarette and exhaled mainstream smoke) that sticks to indoor surfaces and

persists after active smoking has occurred.1,2 Chemicals in THS accumulate and can react with other

compounds or can be reemitted into the environment.1-3 Nonsmokers can be exposed to chemicals

in THSmonths or even years after smoking has stopped.3Many THS chemicals are toxic volatile and

semivolatile organic compounds.2-4 Nicotine, a major chemical in THS, has a high affinity for

surfaces3 and can react with ambient nitrous acid to form tobacco-specific nitrosamines, some of

which are carcinogens.5,6Nicotine-derived nitrosamines in THS include 4-(methylnitrosamino)-1-(3-

pyridinyl)-1-butanone, andN-nitrosonornicotine,5,6which are also found in secondhand smoke and

have been associated with the development of lung cancer.7 Ozone can also react with nicotine to

form formaldehyde, a known human carcinogen.8

Owing to the presence of these and other hazardous chemicals in THS, such as acrolein, it is

important to understand whether there is a correlation between exposure to THS and human health,

especially in nonsmokers. Previous studies9,10 have demonstrated that exposure of human cell lines

to THS extracts for 24 hours increased DNA strand breaks and oxidative DNA damage. Mouse neural

stem cells undergo blebbing, fragmentation, cytoskeletal disruption, and vacuolizationwhen treated

with extracts of THS.11 Thirdhand smoke is also associated with stress-inducedmitochondrial

hyperfusion (SIMH), which is accompanied by increasedmitochondrial membrane potential,

adenosine triphosphate (ATP) production, and reactive oxygen species (ROS).12During SIMH,

punctate mitochondria fuse and form tubular networks that allow exchange of molecules, including

mitochondrial DNA, as a survival mechanism.13 Acrolein has been identified as a THS chemical that

inhibits cell proliferation.11 In a metabolomics study using male germ cells, THS exposure was

associated with downregulation of several molecular pathways, including nucleic acid metabolism

and ammonia metabolism, and upregulation of glutathionemetabolism.14

Thirdhand smoke is also associated with adverse health effects in mice. Three-week old mice

that were housed for 6 months in cages containing a THS-impregnated fabric and bedding showed

an increase in inflammatory cytokines in lung tissue, impaired wound healing, and were hyperactive

compared with controls.15 Adult mice developed insulin resistance as a consequence of oxidative

stress associated with THS and showed increased blood glucose levels, increased serum insulin

levels, and accumulation of fat in viscera.16Oxidative stress in skeletal muscle and accumulation of

hydrogen peroxide accompanied by low catalase activity was observed in long-term exposedmice.17

After THS exposure, neonatal mice had significantly more eosinophils, increased platelet volume,

lower hematocrit levels, and decreasedmean cell volume than controls, while adult exposedmice

had a significant increase in the percentage of B-cells and a decrease in myeloid cells.18

Elimination of THS can be challenging, as it persists in houses previously owned by smokers

even after 2 months of vacancy.19 Cars previously owned by smokers also retain THS, and new

owners may be at risk of exposure.20 Common household fabrics retained THS chemicals 19months

after smoking had occurred.4 Individuals absorb nicotine through their skin while wearing

THS-exposed clothes.21Moreover, infants whosemothers smoked outdoors hadmuch higher levels

of urine cotinine, a nicotine metabolite, than infants of nonsmoking parents.22 Other examples of

the persistence of THS have been reviewed recently.2

Although these prior studies demonstrate that humans are at risk of exposure to THS, the

molecular effects of such exposure on humans have not been investigated. The purpose of this study

was to evaluate the effects of inhalation of THS chemicals on gene expression in humans. Nasal

epithelial cells were collected from nonsmokers before and after 3 hours of exposure to either clean

air or to THS, subjected to RNA sequencing, and analyzed for differential expression of genes (DEG).

Significant changes in gene expression were found following THS exposure, but not exposure to

clean air.
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Methods

Ethics

The study was approved by University of California, San Francisco institutional review board. Written

informed consent was given by all participants. This study followed the Consolidated Standards of

Reporting Trials (CONSORT) reporting guideline. A trial protocol including details of participant

recruitment, written informed consent, screening, selection, compensation, and involvement in the

study is available in Supplement 1. The RNA sequencing analysis was approved by the University of

California at Riverside institutional review board.

Study Population, Generation of THS, and THS Exposure

The protocol for the primary study during which the nasal epithelial cell samples were collected

appears in the CONSORT flow diagram (Figure 1) and Supplement 1. It was conducted at the

University of California, San Francisco, between 2011 and 2015. Briefly, 26 healthy nonsmokers who

were not exposed to secondhand cigarette smoke in daily life were exposed, head-only, to THS

aerosol and to conditioned, filtered air for 3 hours using an exposure chamber described previously.23

Of these 26 individuals, 13 (8 women and 5 men) had nasal epithelial cell samples collected before

and after each exposure. Nasal epithelial samples were collected from the anterior, inferior turbinate

using small, sterile plastic curettes (RhinoPro; Arlington Scientific, Inc). These samples were

immediately placed in RNAlater (Qiagen) and shipped frozen to the University of California,

Riverside, where RNA extraction and subsequent analyses were performed.

RNA Isolation

Ribonucleic acidwas isolated fromhuman nasal samples using RNeasyMicro Kits (Qiagen) and stored

at −80 °C. We quantified RNA using a NanoDrop ND-1000 Spectrophotometer (Thermo Fisher

Scientific). Samples from 4 participants had RNA concentrations greater than 3 ng/μL, and these

were used for subsequent analysis. Frozen RNA samples were shipped to Cofactor Genomics for

library preparation and sequencing.

RNASequencing

Cofactor Genomics performed quality control on RNA samples, and RNA integrity was determined

using a the Agilent 2100 Bioanalyzer. Samples with RNA integrity numbers between 8 and 10 were

used for library construction. Total RNA was reverse-transcribed using an Oligo (dT) primer

Figure 1. CONSORT FlowDiagram of Parent Study and Subset Sample

41 Assessed for eligibility

11 Allocated to clean air then THS

11 Received allocated intervention

9 Completed 2 exposures

4 Nasal sample collected

4 Included—sufficient RNA

13 Completed 2 exposures

8 Nasal sample collected

8 Excluded—insufficient RNA

2 Lost to follow-up (did not respond
to repeated contact attempts)

2 Lost to follow-up (did not respond
to repeated contact attempts)

15 Allocated to THS then clean air

15 Received allocated intervention

26 Randomized

14 Excluded

9 Did not meet inclusion criteria

1 Declined to participate

5 Other reasons

Of 26 participants included in the parent study, nasal

epithelial samples from 4 had sufficient RNA to be

included in the subset sample.
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(Co-Factor), and limited cDNA amplification was performed using the SMARTer Ultra Low Input RNA

Kit for Sequencing–v4 (Takara Bio USA, Inc). Full-length cDNAwas fragmented and tagged, followed

by limited polymerase chain reaction enrichment to generate the final cDNA sequencing library

(Nextera XT DNA Library Prep; Illumina). Libraries were sequenced as single-end 75–base pair reads

using an Illumina NextSeq500 following the manufacturer's instructions. Because the amount of

nasal epithelium in each sample was very limited, we were not able to perform confirmatory

quantitative polymerase chain reaction.

Bioinformatics Analysis

FASTQ files obtained from Cofactor were processed on a high-performance computing cluster at the

University of California, Riverside. The RNA sequencing analysis workflow implemented by

systemPipeR24was used to perform all the downstream data processing. Briefly, adapter sequences

and low-quality tails were removed from the raw reads using the Trimmomatic package.25 The

preprocessed reads were then aligned against the hg19 human reference genome in the University

of California, Santa Cruz, Genome Browser with Tophat2 (version 2.0.14).26,27 Read counting was

performedwith the summarizeOverlaps function of the GenomicsAlignment package. Only unique

reads overlapping the exonic gene regions were counted.28Using a cutoff value of at least 1 read per

kilobase per million of mapped reads averaged across all samples, raw expression counts of the

remaining 10 938 genes passing this filter were used for differential expression analysis with

EdgeR.29Within each experimental group (group 1, 2, 3, and 4), the read counts from the 4 biological

replicateswere combined. For differential expression analysis, groups 1 and 2 (before and after clean

air) and groups 3 and 4 (before and after THS)were treated as 2 separate experimental comparisons.

Genes were considered to be DEGs if they had a false discovery rate (FDR) less than 0.1 by EdgeR.

ClusterProfiler30 and ReactomePA31 packages were used to identify overrepresented GO terms and

enriched Reactome pathways, respectively, as described in the package manual. Additionally,

enrichment analyses of pathways were performed using the Ingenuity Pathway Analysis (IPA)

software (Qiagen). Briefly, statistically significant transcripts were uploaded to IPA, and human

homologs were automatically identified using the National Center for Biotechnology Information’s

HomoloGene.

Statistical Analysis

The EdgeR package was used to obtain log-fold changes, P values, and FDR scores (based on the

Benjamini-Hochberg method). A gene was considered significantly differentially expressed if the

FDRwas less than 0.1. ClusterProfiler version 3.12.0 and ReactomePA version 1.28.0 packages used a

Benjamini-Hochberg adjusted P value of less than .05 to identify significantly enriched Gene

Ontology (GO) terms and Reactome pathways, respectively. Ingenuity Pathway Analysis used the

Fisher 1-tailed exact test with a P value threshold of .05 to identify statistically significant pathways;

the algorithm considered both direct and indirect relationships using the Ingenuity Knowledge Base

(genes only) as the reference set. Analysis was performed using the EdgeR package in R statistical

analysis software version 3.263 (R Project for Statistical Computing).

Results

Exposure to THSAltered Gene Expression in HumanNasal Epithelium

Participants were 4 healthy, nonsmoking women aged 27 to 49 years (mean [SD] age, 42 [10.2]

years) with no chronic diseases. The samples collectedwere small and sufficient quantities of RNA for

sequencing analysis could only be extracted from 4women. By chance, these 4 participants had all

been randomized to receive the clean air exposure first and THS exposure second; thus, we were

unable to determine the effect of order on RNA expression. After processing RNA sequencing reads,

data were analyzed to determine whether there were differences in gene expression in the groups

exposed to either clean air (group 1 vs group 2) or THS (group 3 vs group 4) (eFigure 1 in
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Supplement 2). The data set consisted of approximately 10000 genes, of which 2 and 389were

significantly differentially affected (FDR <0.10) in participants exposed to clean air and to THS,

respectively (eTable 1 in Supplement 2). The 2 downregulated genes (hemoglobin, alpha 1 and

hemoglobin, alpha 2) identified when participants were exposed to clean air had an absolute fold

change of 8.2 and 8.7, respectively (eTable 2 in Supplement 2). No genes were significantly

upregulated in the group exposed to clean air (eFigure 2 in Supplement 2). Because these results

showed that wearing the respirator for 3.5 hours and inhaling clean air did not significantly impact

gene expression, clean air was not studied further.

Nasal samples collected after THS exposure had a significant number of DEGs compared with

samples collected before exposure (eTable 1 and eFigure 2 in Supplement 2). A total of 382 genes

were significantly upregulated (FDR <0.1), while 7 were downregulated (eTable 1 in Supplement 2).

The log2-fold changes for upregulated genes ranged from 2 to 7, while downregulated genes ranged

from −2 to −9 (eTable 3 in Supplement 2). These data demonstrate that inhalation of THS for a

relatively short time significantly altered gene expression in the human nasal epithelium.

GOTermEnrichment Analysis

We performed GO enrichment analysis on the upregulated DEGs to identify biological functions

associated with THS (Figure 2A and B; eTable 4, eTable 5, and eTable 6 in Supplement 2). The GO

database categorizes genes into different ontologies that represent biological knowledge.32Our

analysis identified 11 functions enriched within the biological processes, 13 within cellular

components, and 1withinmolecular function. All the processeswere significantly enriched (q < 0.05)

(eTable 4, eTable 5, and eTable 6 in Supplement 2). Most of the affected biological processes and

cellular components in participants exposed to THS involvedmitochondrial function or RNA

metabolism. The top GO biological process terms included ribonucleoprotein complex biogenesis

(GO:0022613), cellular respiration (GO:0045333), respiration electron transport chain

(GO:0022904) (q = 2.84 × 10−3), andmitochondrial ATP synthesis coupled electron transport

(GO:0042775) (Figure 2A). Most of the remaining GO biological processes included oxidative

phosphorylation-related functions (eTable 4 in Supplement 2). The top enriched GO cellular

components terms includedmitochondria protein complex (GO:0098798), mitochondrial

membrane part (GO:0044455), ribosomal subunit (GO:0044391), mitochondrial inner membrane

(GO:0005743) (q = 7.21 × 10−6), respiratory chain (GO:0070469), large ribosomal subunit

(GO:0015934), and respiratory chain complex (GO:0098803) (Figure 2B). All the remaining GO

terms involvedmitochondrial functions except for the 2 that were related to ribosomal subunit

(eTable 5 in Supplement 2). No enriched GO terms could be identified for the downregulated genes

in the THS experimental group, most likely owing to the small number of genes in this set.

Reactome Enrichment Analysis

The Reactome enrichment analysis was used to further evaluate the upregulated DEGs after THS

exposure. This analysis yielded a total of 25 pathways that were significantly enriched (eTable 7 in

Supplement 2). The top 6 pathways (Figure 2C) included the citric acid cycle (R-HSA-1428517),

respiratory electron transport (R-HSA-611105), translation (R-HSA-72766), mitochondrial protein

import (R-HSA-1268020), mRNA splicing-minor pathway (R-HSA-72165), and nucleotide excision

repair (R-HAS-5696398) (q = 1.05 × 10−2). Figure 2C shows the genes associated with each pathway

and the overlap for those belonging to multiple pathways. Also shown are the approximate fold

change values of each gene.

Ingenuity PathwayAnalysis

Ingenuity Pathway Analysis was also performed using upregulated genes in the THS-exposed group.

The top pathways identified included sirtuin signaling pathways, EIF2 signaling, mitochondrial

dysfunction, and oxidative phosphorylation (P = .001) (Table 1). Some pathways identified in IPA

overlapped with those identified using Reactome enrichment analysis, includingmitochondrial
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related pathways and DNA repair-related pathways. The top toxicological pathways identified

includedmainly processes related tomitochondrial activity, such as mitochondrial dysfunction,

increases transmembrane potential of mitochondria and mitochondrial membrane, and decreases

permeability transition of mitochondria andmitochondrial membrane. In addition, genes were linked

to glutathione depletion phase II reactions (P = .04) (Table 1).

Diseases and functions associated with the DEGs after THS exposure were identified by IPA

(Table 2). These data were filtered and only functions with activated z scores that predict

transcriptional activation or inhibition based on literature reports are presented (Table 2). The

identified functions included decreased cell death and increased cell viability, homologous

recombination, and cell proliferation. eFigure 3 in Supplement 2 shows upregulated genes associated

with inhibition of cell death. The figure includes gene names and whether their expression could

activate (orange lines) or inhibit (blue lines) cell death. For cell death, the majority of the upregulated

genes predict inhibition (blue lines). Based on each gene’s biological role, IPA predicted that cell

death had an activation z score of −3.117 (overall process decreased) (Table 2). Complementary to cell

Figure 2. Gene Ontology (GO) and Reactome Pathway Enrichment Analysis of the Differentially Expressed Genes in HumanNasal Epithelium

Exposed to Thirdhand Smoke
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Bar charts show themost highly enriched biological process (A) and cellular component

(B) GO terms. Each bar represents the number of genes identified in our study that are

associated with each process or component. All biological processes and cellular

components identified had an adjusted P value for multiple testing less than .05. C,

Network plot shows the top 6 enriched pathways and the associated genes using

Reactome pathway analysis. Also shown are the approximate fold change values of each

gene. The colored lines show the link between the genes and pathways identified. ATP

indicates adenosine triphosphate; ET, electron transport; ETC, electron transport chain;

IMM,mitochondrial innermembrane; LSU, large subunit; MM,mitochondrial membrane;

MRC, mitochondrial respiratory chain; mRNA, messenger RNA; Mt, mitochondria;

NADH-DN, nicotinamide adenine dinucleotide dehydrogenase complex; Nc, noncoding

RNA; RC, respiratory chain; RNP, ribonucleoprotein; rRNA, ribosomal RNA; and TCA,

trichloroacetic acid cycle.
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death, cell viability (z score = 5.026) (eFigure 4 in Supplement 2) and homologous recombination (z

score = 2.828) (eFigure 5 in Supplement 2) both had increased activation states (Table 2).

Discussion

The adverse health effects of THS have been studied in cultured cells and animal models,2 but to our

knowledge similar investigations have not been previously performed in humans. Our study provides

the first insight, to our knowledge, into the transcriptional responses of human respiratory

epithelium to acute THS exposure. Remarkably, we found changes in gene expression in healthy

nonsmokers following a 3-hour exposure to THS. The absence of an effect following clean air

exposure provides evidence that the changes in gene expression following THS exposure are caused

by THS per se and not by the respirator worn during exposure. Because gene expression in the nasal

epithelium is similar to the bronchial epithelium,33 our data are also relevant to the cells deeper in the

respiratory system.

Our analyses demonstrated that brief exposure to THS affectedmitochondrial activity. We

previously reported that culturedmouse neural stem cells undergo SIMH following exposure to THS

extracts.12 This process was originally described during treatment of mouse embryonic fibroblasts

with UV light and cell cycle inhibitors, such as actinomycin D.13 Stress-induced mitochondrial

hyperfusion is characterized by fusion of mitochondria and subsequent increased production of ATP

and superoxide.12We found an enrichment in pathways and biological processes related to increased

mitochondrial activity and oxidative stress after THS exposure, such asmitochondrial ATP synthesis

coupled electron transport chain (GO:0042773), respiratory electron transport (R-HSA-611105), and

Table 1. Ingenuity Pathway Analysis–Enriched Pathways After Exposure to Thirdhand Smoke

Pathway P Value

P Value

Genes, No.>.01 <.01

Canonical pathways

Sirtuin signaling pathway .01 X 11

EIF2 signaling .006 X 10

Mitochondrial dysfunction .002 X 9

Oxidative phosphorylation .001 X 8

Hereditary breast cancer signaling .03 X 6

Oncostatin M signaling .003 X 4

Nucleotide excision repair pathway .003 X 4

Colanic acid building blocks biosynthesis .002 X 3

Methionine degradation I (to homocysteine) .005 X 3

Cysteine biosynthesis III (mammalia) .006 X 3

Glutathione-mediated detoxification .008 X 3

Superpathway of methionine degradation .02 X 3

Serine biosynthesis .003 X 2

Superpathway of serine and glycine biosynthesis I .006 X 2

γ-glutamyl cycle .02 X 2

UDP-N-acetyl-D-galactosamine biosynthesis I .02 X 1

Spliceosomal cycle .03 X 1

L-DOPA degradation .03 X 1

GDP-L-fucose biosynthesis I (from GDP-D-mannose) .03 X 1

Top toxicological pathways

Mitochondrial dysfunction .003 X 9

Increased transmembrane potential of mitochondria
and mitochondrial membrane

.06 X 3

Decreased permeability transition of mitochondria
and mitochondrial membrane

.006 X 2

Glutathione depletion phase II reactions .04 X 2
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oxidative phosphorylation (Table 1). Increased expression of these pathways is also consistent with

an increase in ATP synthesis, as occurs in SIMH.12 Some genes related to the citric acid cycle were also

upregulated, which could also increase ATP production. Several studies have shown that cigarette

smoking also induces activation of mitochondrial pathways similar to those found in our study.34-36

While SIMH results in increased ATP production, it also increases ROS.12,13 Our IPA analysis

showed that glutathione depletion phase II reactions were upregulated after THS exposure.

Specifically, there was an increase in glutathione synthetase expression, which was also increased in

a male germ cell line exposed to THS.14 This gene is part of the glutathione synthetase pathway,

which scavenges ROS,37 suggesting the increase of the glutathione synthetase gene is a cellular

response to high levels of ROS.

In prior studies, increased ROSwas associated with oxidative stress and damage of proteins,

lipids, and DNA,38while THS treatment was correlated with DNA damage in vitro.9,10Our IPA-based

enriched pathway analysis included upregulation of the nucleotide excision repair pathway in

Table 2. Disease and Function Annotations From Ingenuity Pathway Analysis

Categories Diseases or Functions Annotation
Predicted
Activation State

Activation
z Score

Molecules,
No. P Value

P Value

>.01 <.01

Cell death and survival Cell death Decreased −3.117 77 .002 X

Cell death and survival Apoptosis Decreased −3.686 63 .001 X

Cell death and survival Necrosis Decreased −2.641 59 .04 X

Cell death and survival Cell death of tumor cell lines Decreased −3.029 50 .03 X

Cell death and survival Apoptosis of tumor cell lines Decreased −2.617 41 .02 X

Cell death and survival Cell viability Increased 5.026 38 .01 X

Cell death and survival Cell viability of tumor cell lines Increased 4.59 32 .02 X

Cell death and survival Cell viability of breast cancer cell lines Increased 3.094 10 .02 X

Cell death and survival Cell viability of blood cells Increased 2.195 6 .02 X

Cell death and survival Cell viability of leukocytes Increased 2.2 5 .03 X

Infectious diseases Viral Infection Increased 5.315 54 .002 X

Infectious diseases Infection by RNA virus Increased 4.494 31 .03 X

Infectious diseases Infection of cells Increased 4.594 29 .009 X

Infectious diseases Infection by HIV-1 Increased 4.301 23 .02 X

Infectious diseases Replication of RNA virus Increased 3.087 19 .004 X

Infectious diseases Infection of cervical cancer cell lines Increased 3.772 18 .01 X

Infectious diseases Replication of influenza A virus Increased 2.824 13 .005 X

Cell cycle, DNA replication,
recombination, and repair

Homologous recombination of cells Increased 2.828 8 <.001 X

Cellular development, cellular
growth and proliferation

Cell proliferation of breast cancer cell
lines

Increased 2.811 18 .03 X

Figure 3. Schematic Diagram Summarizing the Responses of HumanNasal Epithelium to Thirdhand Smoke
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participants exposed to THS. Two of the genes affected in this pathway included xeroderma

pigmentosum group C and RNA polymerase II. The former is essential for recognition of DNA damage

and plays a role in the early steps of the nucleotide excision repair pathway.39Upregulation of RNA

polymerase II has also been associated with a response to increased DNA damage.40 Ingenuity

Pathway Analysis also identified an increased activation of homologous recombination. This pathway

provides a repair mechanism for double-stranded DNA breaks.41 Activation of the DNA repair

pathways is also a cellular mechanism to facilitate survival.42 In addition, an in vitro study showed

that THS induces oxidation of mitochondrial proteins.12 The increase in ROS as evidenced by

upregulation of ROS scavenging genes in our data could also result in oxidation of mitochondrial

proteins by high local concentrations of superoxide.

Our data further demonstrate an overall increase in processes related to cell viability, which

includes some genes involved in cell proliferation. Our results are consistent with previous in vitro

studies showing increased proliferation of culturedmouse neural stem cells and human lung cancer

cells exposed to THS extract.12,43 Nicotine, a major component of THS4 and a chemical in our

exposure chamber, can activate alpha nicotinic acetylcholine receptors in normal human airway

epithelial cells, leading to phosphorylation (activation) of serine/threonine kinase Akt, which is

involved in many cellular survival pathways.44 Akt can be activated within minutes of exposure to

nicotine or 4-(methylnitrosamino)-1-(3-pyridinyl)-1-butanone,44 further demonstrating that

chemicals in THS could produce a rapid response. Nicotine is also associated with increased

proliferation of human cancer cell lines by activating the α7 nicotinic acetylcholine receptors.45

Considering that nicotine stimulates cell proliferation,45 it is possible that nicotine in THS contributes

to the increase in cell viability pathways that we observed.

Nicotine is also involved in inhibiting apoptosis.46 In our study, the increased expression of

genes involved in inhibiting cell death (eFigure 3 in Supplement 2) may have been associated with

nicotine, which was present in the THS at a concentration of 0.03mg/L (to convert to micromoles

per liter, multiply by 6.164). Consistent with our study, cells exposed to THS in vitro showed

decreased expression in proapoptotic genes.12 Themechanism by which nicotine inhibits apoptosis

has been studied in mouse liver cells.47 Activation of α7 nicotinic acetylcholine receptors in the

mitochondrial outer membrane by nicotine inhibited hydrogen peroxide–induced apoptosis by

impairing calcium ion accumulation in mitochondria and cytochrome C release.47However, this

suppression of cell deathmay be transitory. Bahl et al12 showed that cells exposed to THS for 30 days

had a decrease in cell proliferation and lost mitochondrial membrane potential, indicating that cells

were entering apoptosis.

Limitations

This study has limitations. This is an initial study based on 4 participants. Future work should be done

to determine whether similar data are obtained with a larger number of participants that includes

both sexes. In addition, longer exposures to THS could be studied.

Conclusions

In summary, this is the first exposure study to document an association between THS and gene

expression in humans. Our results show that THS induced cell survival responses, which included

upregulation of genes involved in DNA repair, activation of cell viability, increasedmitochondrial

activity, and inhibition of cell death (Figure 3). These changes are very similar to those reported

previously for in vitro cultured cells.9,11,12 Importantly, the changes in gene expression in the current

study were seen following a relatively short (3-hour) exposure, indicating that humans respond

rapidly to THS. Future studies on long-term exposure in conjunction with our study could broaden

our understanding of the effects of THS on human health. Our study provides an important

foundation for physicians treating patients exposed to THS and for future development of

regulations dealing with remediation of indoor environments contaminated with THS.
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